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Measurement of qubits
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We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum
two-level systems~‘‘qubits’’ !. Our particular emphasis is on qubits realized by the two polarization degrees of
freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion
applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a
tomographic reconstruction~in which the density matrix is linearly related to a set of measured quantities! and
a maximum likelihood technique which requires numerical optimization~but has the advantage of producing
density matrices that are always non-negative definite!. In addition, a detailed error analysis is presented,
allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation,
to be estimated. Examples based on down-conversion experiments are used to illustrate our results.

DOI: 10.1103/PhysRevA.64.052312 PACS number~s!: 03.67.2a, 42.50.2p
a

g
an
ar
tu
t
e
sy

e
ro
w
tw
th

th
at
c
tu
es
o-
s

e
it

er
ov
se
an

tri-
en
the
a-

e
rical

em-
of

ine
-
-
ic

gle
es
ach
e
in-

n-

-
ues
ion

eal-
of

eri-

or
rre-o
I. INTRODUCTION

The ability to create, manipulate, and characterize qu
tum states is becoming an increasingly important area
physical research, with implications for areas of technolo
such as quantum computing, quantum cryptography,
communications. With a series of measurements on a l
enough number of identically prepared copies of a quan
system, one can infer, to a reasonable approximation,
quantum state of the system. Arguably, the first such exp
mental technique for determining the state of a quantum
tem was devised by George Stokes in 1852@1#. His famous
four parameters allow an experimenter to determine uniqu
the polarization state of a light beam. With the insight p
vided by nearly 150 years of progress in optical physics,
can consider coherent light beams to be an ensemble of
level quantum mechanical systems, the two levels being
two polarization degrees of freedom of the photons;
Stokes parameters allow one to determine the density m
describing this ensemble. More recently, experimental te
niques for the measurement of the more subtle quan
properties of light have been the subject of intensive inv
tigation ~see Ref.@2# for a comprehensive and erudite exp
sition of this subject!. In various experimental circumstance
it has been found reasonably straightforward to devis
simple linear tomographic technique in which the dens
matrix ~or Wigner function! of a quantum state is found from
a linear transformation of experimental data. However, th
is one important drawback to this method, in that the rec
ered state might not correspond to a physical state becau
experimental noise. For example, density matrices for
quantum state must be Hermitian, positive semidefinite m
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trices with unit trace. The tomographically measured ma
ces often fail to be positive semidefinite, especially wh
measuring low-entropy states. To avoid this problem
‘‘maximum likelihood’’ tomographic approach to the estim
tion of quantum states has been developed@3–7#. In this
approach the density matrix that is ‘‘mostly likely’’ to hav
produced a measured data set is determined by nume
optimization.

In the past decade several groups have successfully
ployed tomographic techniques for the measurement
quantum mechanical systems. In 1990 Ashburnet al. re-
ported the measurement of the density matrix for the n
sublevels of then53 level of hydrogen atoms formed fol
lowing collision between H1 ions and He atoms, in condi
tions of high symmetry which simplified the tomograph
problem@8#. Since then, in 1993 Smitheyet al. made a ho-
modyne measurement of the Wigner function of a sin
mode of light@9#. Other explorations of the quantum stat
of single mode light fields have been made by Breitenb
et al. @10# and Wuet al. @11#. Other quantum systems whos
density matrices have been investigated experimentally
clude the vibrations of molecules@12#, the motion of ions
and atoms@13,14#, and the internal angular momentum qua
tum state of theF54 ground state of a cesium atom@15#.

The quantum states of multiple spin-1
2 nuclei have been mea

sured in the high-temperature regime using NMR techniq
@16#, albeit in systems of such high entropy that the creat
of entangled states is necessarily precluded@17#. The mea-
surement of the quantum state of entangled qubit pairs, r
ized using the polarization degrees of freedom of a pair
photons created in a parametric down-conversion exp
ment, was reported by us recently@18#.

In this paper we will examine in detail techniques f
quantum state measurement as it applies to multiple co
lated two-level quantum mechanical systems~or ‘‘qubits’’ in
the terminology of quantum information!. Our particular em-

s
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phasis is qubits realized via the two polarization degrees
freedom of photons, data from which we use to illustrate
results. However, these techniques are readily applicabl
other technologies proposed for creating entangled state
pairs of two-level systems. Because of the central importa
of qubit systems to the emergent discipline of quantum co
putation, a thorough explanation of the techniques neede
characterize the qubit states will be of relevance to work
in the various diverse experimental fields currently un
consideration for quantum computation technology@19#.
This paper is organized as follows. In Sec. II we explore
analogy with the Stokes parameters, and how they lead n
rally to a scheme for measurement of an arbitrary numbe
two-level systems. In Sec. III, we discuss the measurem
of a pair of qubits in more detail, presenting the valid
condition for an arbitrary measurement scheme and introd
ing the set of 16 measurements employed in our exp
ments. Sec. IV deals with our method for maximum like
hood reconstruction and in Sec. V we demonstrate how
calculate the errors in such measurements, and how t
errors propagate to quantities calculated from the den
matrix.

II. THE STOKES PARAMETERS AND QUANTUM STATE
TOMOGRAPHY

As mentioned above, there is a direct analogy between
measurement of the polarization state of a light beam and
measurement of the density matrix of an ensemble of t
level quantum mechanical systems. Here we explore
analogy in more detail.

A. Single qubit tomography

The Stokes parameters are defined from a set of four
tensity measurements@20#: ~i! with a filter that transmits
50% of the incident radiation, regardless of its polarizatio
~ii ! with a polarizer that transmits only horizontally polarize
light; ~iii ! with a polarizer that transmits only light polarize
at 45° to the horizontal; and~iv! with a polarizer that trans
mits only right-circularly polarized light. The number o
photons counted by a detector, which is proportional to
classical intensity, in these four experiments is as follows

n05
N
2

~^Hur̂uH&1^Vur̂uV&!5
N
2

~^Rur̂uR&1^Lur̂uL&!,

n15N~^Hur̂uH&!

5
N
2

~^Rur̂uR&1^Rur̂uL&1^Lur̂uR&1^Lur̂uL&!,

n25N~^D̄ur̂uD̄&!

5
N
2

~^Rur̂uR&1^Lur̂uL&2 i ^Lur̂uR&1 i ^Rur̂uL&!,

n35N~^Rur̂uR&!. ~2.1!
05231
of
r
to
of

ce
-
to

rs
r

e
tu-
of
nt

c-
i-

to
se
ty

he
he
-
is

n-

;

e

Here uH&, uV&, uD̄&5(uH&2uV&)/A25exp(ip/4)(uR&
1 i uL&)/A2, and uR&5(uH&2 i uV&)/A2 are the kets repre
senting qubits polarized in the linear horizontal, linear ve
cal, linear diagonal (45°), and right-circular senses resp
tively, r̂ is the (232) density matrix for the polarization
degrees of the light~or for a two-level quantum system!, and
N is a constant dependent on the detector efficiency and l
intensity. TheStokes parameters, which fully characterize
the polarization state of the light, are then defined by

S0[2n05N~^Rur̂uR&1^Lur̂uL&!,

S1[2~n12n0!5N~^Rur̂uL&1^Lur̂uR&!,

S2[2~n22n0!5Ni ~^Rur̂uL&2^Lur̂uR&!,

S3[2~n32n0!5N~^Rur̂uR&2^Lur̂uL&!.
~2.2!

We can now relate the Stokes parameters to the density
trix r̂ by the formula

r̂5
1

2 (
i 50

3 Si

S0
ŝ i , ~2.3!

whereŝ05uR&^Ru1uL&^Lu is the single qubit identity opera
tor andŝ15uR&^Lu1uL&^Ru, ŝ25 i uL&^Ru2uR&^Lu, andŝ3
5uR&^Ru2uL&^Lu are the Pauli spin operators. Thus th
measurement of the Stokes parameters can be consid
equivalent to a tomographic measurement of the density
trix of an ensemble of single qubits.

B. Multiple beam Stokes parameters: Multiple qubit
tomography

The generalization of the Stokes scheme to measure
state of multiple photon beams~or multiple qubits! is reason-
ably straightforward. One should, however, be aware t
important differences exist between the one-photon and
multiple photon cases. Single photons, at least in the cur
context, can be described in a purelyclassicalmanner, and
the density matrix can be related to the purely classical c
cept of the coherency matrix@21#. For multiple photons one
has the possibility of nonclassical correlations occurrin
with quintessentially quantum mechanical phenomena s
as entanglement being present. We will return to the conc
of entanglement and how it may be measured later in
paper.

An n-qubit state is characterized by a density mat
which may be written as follows:

r̂5
1

2n (
i 1 ,i 2 , . . . ,i n50

3

r i 1 ,i 2 , . . . ,i n
ŝ i 1

^ ŝ i 2
^ •••^ ŝ i n

,

~2.4!

where the 4n parametersr i 1 ,i 2 , . . . ,i n
are real numbers. The

normalization property of the density matrices requires t
r 0,0, . . . ,051, and so the density matrix is specified by 4n

21 real parameters. The symbol̂ represents the tenso
2-2
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FIG. 1. Tree diagram representing number and type of measurements necessary for tomography. For a single qubit, the mea

$m̂0 ,m̂1 ,m̂2 ,m̂3% suffice to reconstruct the state, e.g., measurements of the horizontal, vertical, diagonal, and right-circular pola

components, (H,V,D,R). For two qubits, 16 double-coincidence measurements are necessary ($m̂0m̂0 ,m̂0m̂1 , . . . ,m̂3m̂3%), increasing to 64

three-coincidence measurements for three qubits ($m̂0m̂0m̂0 ,m̂0m̂0m̂1 , . . . ,m̂3m̂3m̂3%), and so on, as shown.
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product between operators acting on the Hilbert spaces a
ciated with the separate qubits.

As Stokes showed, the state of a single qubit can be
termined by taking a set of four projection measureme
which are represented by the four operatorsm̂05uH&^Hu
1uV&^Vu, m̂15uH&^Hu, m̂25uD̄&^D̄u, m̂35uR&^Ru. Simi-
larly, the state of two qubits can be determined by the se
16 measurements represented by the operatorsm̂ i ^ m̂ j ( i , j
50,1,2,3). More generally the state of ann-qubit system can
be determined by 4n measurements given by the operato
m̂ i 1

^ m̂ i 2
^ •••^ m̂ i n

( i k50,1,2,3 andk51,2, . . . ,n). This
‘‘tree’’ structure for multiqubit measurement is illustrated
Fig. 1.

The proof of this conjecture is reasonably straightforwa
The outcome of a measurement is given by the formula

n5N Tr$r̂m̂%, ~2.5!

wherer̂ is the density matrix,m̂ is the measurement opera
tor, and N is a constant of proportionality which can b
determined from the data. Thus in ourn-qubit case the out-
comes of the various measurement are

ni 1 ,i 2 , . . . ,i n
5N Tr $r̂~ m̂ i 1

^ m̂ i 2
^ •••^ m̂ i n

!%. ~2.6!

Substituting from Eq.~2.4! we obtain

ni 1 ,i 2 , . . . ,i n
5

N
2n (

j 1 , j 2 , . . . ,j n50

3

Tr$m̂ i 1
ŝ j 1

%

3Tr$m̂ i 2
ŝ j 2

%•••Tr$m̂ i n
ŝ j n

%r i 1 ,i 2 , . . . ,i n
.

~2.7!

As can be easily verified, the single qubit measurement
eratorsm̂ i are linear combinations of the Pauli operatorsŝ j ,
i.e., m̂ i5( j 50

3 Y i j ŝ j , whereY i j are the elements of the ma
trix
05231
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Y5S 1 0 0 0

1/2 1/2 0 0

1/2 0 1/2 0

1/2 0 0 1/2

D . ~2.8!

Further, we have the relation Tr$ŝ i ŝ j%52d i j ~whered i j is
the Kronecker delta!. Hence Eq.~2.7! becomes

ni 1 ,i 2 , . . . ,i n
5N (

j 1 , j 2 , . . . ,j n50

3

Y i 1 j 1
Y i 2 j 2

•••Y i nj n
r i 1 ,i 2 , . . . ,i n

.

~2.9!

Introducing the left inverse of the matrixY, defined so that
(k50

3 (Y21) ikYk j5d i j and whose elements are

Y215S 1 0 0 0

21 2 0 0

21 0 2 0

21 0 0 2

D , ~2.10!

we can find a formula for the parametersr i 1 ,i 2 , . . . ,i n
in terms

of the measured quantitiesni 1 ,i 2 , . . . ,i n
, viz.,

Nr i 1 ,i 2 , . . . ,i n

5 (
j 1 , j 2 , . . . ,j n50

3

~Y21! i 1 j 1
~Y21! i 2 j 2

•••~Y21! i nj n

3ni 1 ,i 2 , . . . ,i n

[Si 1 ,i 2 , . . . ,i n
. ~2.11!

In Eq. ~2.11! we have introduced then-photon Stokes param
eter Si 1 ,i 2 , . . . ,i n

, defined in an analogous manner to t
single photon Stokes parameters give in Eq.~2.2!.

Since, as already noted,r 0,0, . . . ,051, we can make the
identificationS0,0, . . . ,05N, and so the density matrix for th
n-qubit system can be written in terms of the Stokes para
eters as follows:
2-3
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JAMES, KWIAT, MUNRO, AND WHITE PHYSICAL REVIEW A64 052312
r̂5
1

2n (
i 1 ,i 2 , . . . ,i n50

3 Si 1 ,i 2 , . . . ,i n

S0,0, . . . ,0
ŝ i 1

^ ŝ i 2
^ •••^ ŝ i n

. ~2.12!

This is a recipe for measurement of the density matri
which, assuming perfect experimental conditions and
complete absence of noise, will always work. It is importa
to realize that the set of four Stokes measureme

$m̂0 ,m̂1 ,m̂2 ,m̂3% is not unique: there may be circumstanc
in which it is more convenient to use some other set, wh
is equivalent. A more typical set, at least in optical expe
ments, is m̂085uH&^Hu, m̂185uV&^Vu, m̂285uD&^Du, m̂38
5uR&^Ru.

In the following section we will explore more gener
schemes for the measurement of two qubits, starting wi
discussion, in some detail, of how the measurements are
tually performed.

III. GENERALIZED TOMOGRAPHIC RECONSTRUCTION
OF THE POLARIZATION STATE OF TWO PHOTONS

A. Experimental setup

The experimental arrangement used in our experimen
shown schematically in Fig. 2. An optical system consist
of lasers, polarization elements, and nonlinear optical c
tals ~collectively characterized for the purposes of this pa
as a ‘‘black box,’’! is used to generate pairs of qubits in
almost arbitrary quantum state of their polarization degr
of freedom. A full description of this optical system and ho
such quantum states can be prepared can be found in R
@22–24#.1 The output of the black box consists of a pair

1It is important to realize that the entangled photon pairs are p
duced in anondeterministicmanner: one cannot specify with ce
tainty when a photon pair will be emitted; indeed there is a sm
probability of generating four or six or a higher number of photo
Thus we can onlypostselectivelygenerate entangled photon pair
i.e., one only knows that the state was created after if has b
measured.

FIG. 2. Schematic illustration of the experimental arrangeme
QWP stands for quarter-wave plate,HWP for half-wave plate; the
angles of both pairs of wave plates can be set independently gi
the experimenter four degrees of freedom with which to set
projection state. In the experiment, the polarizers were realized
ing polarizing prisms, arranged to transmit vertically polariz
light.
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beams of light, whose quanta can be measured by mean
photodetectors. To project the light beams onto a polariza
state of the experimenter’s choosing, three optical eleme
are placed in the beam in front of each detector: a polar
~which transmits only vertically polarized light!, a quarter-
wave plate, and a half-wave plate. The angles of the fast a
of both of the wave plates can be set arbitrarily, allowing t
uV& projection state fixed by the polarizer to be rotated in
any polarization state that the experimenter may wish.

Using the Jones calculus notation, with the convention

S 0

1D 5uV&, S 1

0D 5uH&, ~3.1!

where uV& (uH&) is the ket for a vertically~horizontally!
polarized beam, the effects of quarter- and half-wave pla
whose fast axes are at anglesq and h with respect to the
vertical axis, respectively, are given by the 232 matrices

ÛQWP~q!5
1

A2
S i 2cos~2q! sin~2q!

sin~2q! i 1cos~2q!
D ,

ÛHWP~q!5S cos~2h! 2sin~2h!

2sin~2h! 2cos~2h!
D . ~3.2!

Thus the projection state for the measurement in one of
beams is given by

ucpro j
(1) ~h,q!&5ÛQWP~q!•ÛHWP~h!•S 0

1D
5a~h,q!uH&1b~h,q!uV&, ~3.3!

where, neglecting an overall phase, the functionsa(h,q) and
b(h,q) are given by

a~h,q!5
1

A2
$sin~2h!2 i sin@2~h2q!#%,

b~h,q!52
1

A2
$cos~2h!1 i cos@2~h2q!#%. ~3.4!

The projection state for the two beams is given by

ucpro j
(2) ~h1 ,q1 ,h2 ,q2!&5ucpro j

(1) ~h1 ,q1!& ^ ucpro j
(1) ~h2 ,q2!&

5a~h1 ,q1!a~h2 ,q2!uHH&

1a~h1 ,q1!b~h2 ,q2!uHV&

1b~h1 ,q1!a~h2 ,q2!uVH&

1b~h1 ,q1!b~h2 ,q2!uVV&. ~3.5!

We shall denote the projection state corresponding to
particular set of wave plate angles$h1,n ,q1,n ,h2,n ,q2,n% by

-

ll
.

en

t.

ng
e
s-
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MEASUREMENT OF QUBITS PHYSICAL REVIEW A64 052312
the ketucn&;
2 thus the projection measurement is represen

by the operatorm̂n5ucn&^cnu. Consequently, the averag
number of coincidence counts that will be observed in
given experimental run is

nn5N^cnur̂ucn& ~3.6!

where r̂ is the density matrix describing the ensemble
qubits, andN is a constant dependent on the photon flux a
detector efficiencies. In what follows, it will be convenient
consider the quantitiessn defined by

sn5^cnur̂ucn&. ~3.7!

B. Tomographically complete set of measurements

In Sec. II we have given one possible set of project
measurements$ucn&^cnu% which uniquely determine the
density matrixr̂. However, one can conceive of situations
which these will not be the most convenient set of measu
ments to make. Here we address the problem of finding o
sets of suitable measurements. The smallest number of s
required for such measurements can be found by a sim
argument: there are 15 real unknown parameters that d
mine a 434 density matrix, plus there is the single unknow
real parameterN, making a total of 16.

In order to proceed it is helpful to convert the 434 matrix
r̂ into a 16-dimensional column vector. To do this we us

set of 16 linearly independent 434 matrices$Ĝn% which
have the following mathematical properties:

Tr$Ĝn•Ĝm%5dn,m

Â5 (
n51

16

ĜnTr$Ĝn•Â% ;Â, ~3.8!

where Â is an arbitrary 434 matrix. Finding a set ofĜn

matrices is in fact reasonably straightforward: for examp
the set of~appropriately normalized! generators of the Lie
algebra SU(2)̂ SU(2) fulfill the required criteria~for refer-
ence, we list this set in Appendix A!. These matrices are o
course simply a relabeling of the two-qubit Pauli matric
ŝ i ^ ŝ j ( i , j 50,1,2,3) discussed above. Using these matri
the density matrix can be written as

r̂5 (
n51

16

Ĝnr n , ~3.9!

wherer n is thenth element of a 16-element column vecto
given by the formula

r n5Tr$Ĝn• r̂%. ~3.10!

2Here the first subscript on the wave plate angle refers to on
the two photon beams; the second subscript distinguishes whic
the 16 different experimental states is under consideration.
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Substituting from Eq.~3.9! into Eq. ~3.6!, we obtain the
following linear relationship between the measured coin
dence countsnn and the elements of the vectorr m :

nn5N(
m51

16

Bn,mr m ~3.11!

where the 16316 matrixBn,m is given by

Bn,m5^cnuĜmucn&. ~3.12!

Immediately we find a necessary and sufficient condition
the completeness of the set of tomographic states$ucn&%: if
the matrix Bn,m is nonsingular, then Eq.~3.11! can be in-
verted to give

r n5~N !21 (
m51

16

~B21!n,mnm . ~3.13!

The set of 16 tomographic states that we employed
given in Table I. They can be shown to satisfy the conditi
thatBn,m is nonsingular. By no means are these states uni
in this regard: these were the states chosen principally
experimental convenience.

These states can be realized by setting specific value
the half- and quarter-wave plate angles. The appropriate
ues of these angles~measured from the vertical! are given in
Table I. Note that overall phase factors do not affect
results of projection measurements.

Substituting Eq.~3.13! into Eq. ~3.9!, we find that

of
of

TABLE I. The tomographic analysis states used in our expe
ments. The number of coincidence counts measured in projec
measurements provides a set of 16 data that allow the density
trix of the state of the two modes to be estimated. We have used
notation uD&[(uH&1uV&)/A2, uL&[(uH&1 i uV&)/A2, and uR&
[(uH&2 i uV&)/A2. Note that, when the measurements are taken
the order given by the table, only one wave plate angle has to
changed between measurements.

n Mode 1 Mode 2 h1 q1 h2 q2

1 uH& uH& 45° 0 45° 0
2 uH& uV& 45° 0 0 0
3 uV& uV& 0 0 0 0
4 uV& uH& 0 0 45° 0
5 uR& uH& 22.5° 0 45° 0
6 uR& uV& 22.5° 0 0 0
7 uD& uV& 22.5° 45° 0 0
8 uD& uH& 22.5° 45° 45° 0
9 uD& uR& 22.5° 45° 22.5° 0
10 uD& uD& 22.5° 45° 22.5° 45°
11 uR& uD& 22.5° 0 22.5° 45°
12 uH& uD& 45° 0 22.5° 45°
13 uV& uD& 0 0 22.5° 45°
14 uV& uL& 0 0 22.5° 90°
15 uH& uL& 45° 0 22.5° 90°
16 uR& uL& 22.5° 0 22.5° 90°
2-5
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r̂5~N !21(
n51

16

M̂ nnn5 (
n51

16

M̂ nsn , ~3.14!

where the sixteen 434 matricesM̂ n are defined by

M̂ n5 (
n51

16

~B21!n,mĜm . ~3.15!

The introduction of theM̂ n matrices allows a compact form
of linear tomographic reconstruction, Eq.~3.14!, which will
be most useful in the error analysis that follows. TheseM̂ n

matrices, valid for our set of tomographic states, are liste
Appendix B, together with some of their important prope
ties. We can use one of these properties, Eq.~B6!, to obtain
the value of the unknown quantityN. That relationship im-
plies

(
n

Tr$M̂ n%ucn&^cnur̂5 r̂. ~3.16!

Taking the trace of this formula, and multiplying byN we
obtain

(
n

Tr$M̂ n%nn5N. ~3.17!

For our set of tomographic states, it can be shown that
al

r
8

y o

te
a

ar
th
t

fo
t
b

05231
in
-

Tr$M̂ n%5H 1 if n51,2,3,4

0 if n55, . . .,16;
~3.18!

hence the value of the unknown parameterN in our experi-
ments is given by

N5 (
n51

4

nn

5N~^HHur̂uHH&1^HVur̂uHV&

1^VHur̂uVH&1^VVur̂uVV&!. ~3.19!

Thus we obtain the final formula for the tomographic reco
struction of the density matrices of our states:

r̂5S (
n51

16

M̂ nnnD Y S (
n51

4

nnD . ~3.20!

As an example, the following set of 16 counts were tak
for the purpose of tomographically determining the dens
matrix for an ensemble of qubits all prepared in a spec
quantum state:n1534 749,n25324, n3535 805,n45444,
n5516 324, n6517 521, n7513 441, n8516 901, n9
517 932, n10532 028, n11515 132, n12517 238, n13
513 171,n14517 170,n15516 722,n16533 586. Applying
Eq. ~3.20! we find
r̂5S 0.4872 20.00421 i0.0114 20.00982 i0.0178 0.51921 i0.0380

20.00422 i0.0114 0.0045 0.02712 i0.0146 20.06482 i0.0076

20.00981 i0.0178 0.02711 i0.0146 0.0062 20.06951 i0.0134

0.51922 i0.0380 20.06481 i0.0076 20.06952 i0.0134 0.5020

D . ~3.21!
ons
ers

hat
n

to
,
for

sti-

ent
tant
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ch-
This matrix is shown graphically in Fig. 3~left!.
Note that, by construction, the density matrix is norm

ized, i.e., Tr$r̂%51, and Hermitian, i.e.,r̂†5 r̂ . However,
when one calculates the eigenvalues of this measu
density matrix, one finds the values 1.021 55, 0.068 123

20.065 274, and20.024 396; and also Tr$r̂2%51.053. Den-
sity matrices for all physical states must have the propert
positive semidefiniteness, which~in conjunction with the
normalization and Hermiticity properties! implies that all of
the eigenvalues must lie in the interval@0,1#, their sum being
1; this in turn implies that 0<Tr$r̂2%<1. Clearly, the density
matrix reconstructed above by linear tomography viola
this condition. From our experience of tomographic me
surements of various mixed and entangled states prep
experimentally, this seems to happen roughly 75% of
time for low-entropy, highly entangled states; it seems
have a higher probability of producing the correct result
states of higher entropy, but the cautious experimen
should check every time. The obvious culprit for this pro
-

ed
,

f

s
-
ed
e
o
r
er
-

lem is experimental inaccuracies and statistical fluctuati
of coincidence counts, which mean that the actual numb
of counts recorded in a real experiment differ from those t
can be calculated by Eq.~3.6!. Thus the linear reconstructio
is of limited value for states of low entropy~which are of
most experimental interest because of their application
quantum information technology!; however, as we shall see
the linear approach does provide a useful starting point
the numerical optimization approach to density matrix e
mation which we will discuss in the next section.

IV. MAXIMUM LIKELIHOOD ESTIMATION

As mentioned in Sec. III, the tomographic measurem
of density matrices can produce results that violate impor
basic properties such as positivity. To avoid this problem,
maximum likelihood estimation of density matrices may
employed. Here we describe a simple realization of this te
nique.
2-6



n-
o-

of

MEASUREMENT OF QUBITS PHYSICAL REVIEW A64 052312
FIG. 3. Graphical representation of the de
sity matrix of a state as estimated by linear t
mography~left! and by maximum likelihood to-
mography ~right! from the experimental data
given in the text. The upper plot is the real part

r̂, the lower plot the imaginary part.
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A. Basic approach

Our approach to the maximum likelihood estimation
the density matrix is as follows.

~i! Generate a formula for an explicitly ‘‘physical’’ densit
matrix, i.e., a matrix that has the three important proper
of normalization, Hermiticity, and positivity. This matrix wil
be a function of 16 real variables~denoted$t1 ,t2 , . . . ,t16%).
We will denote the matrix asr̂p(t1 ,t2 , . . . ,t16).

~ii ! Introduce a ‘‘likelihood function’’ which quantifies
how good the density matrixr̂p(t1 ,t2 , . . . ,t16) is in relation
to the experimental data. This likelihood function is
function of the 16 real parameterstn and of the 16
experimental datann . We will denote this function as
L(t1 ,t2 , . . . ,t16;n1 ,n2 , . . . ,n16).

~iii ! Using standard numerical optimization techniqu
find the optimum set of variables$t1

(opt) ,t2
(opt) , . . . ,t16

(opt)%
for which the functionL(t1 ,t2 , . . . ,t16;n1 ,n2 , . . . ,n16) has
its maximum value. The best estimate for the density ma
is thenr̂(t1

(opt) ,t2
(opt) , . . . ,t16

(opt)).
The details of how these three steps can be carried ou

described in the next three subsections.

B. Physical density matrices

The property of non-negative definiteness for any ma
Ĝ is written mathematically as

^cuĜuc&>0 ;uc&. ~4.1!

Any matrix that can be written in the formĜ5T̂†T̂ must be
non-negative definite. To see that this is the case, subst
into Eq. ~4.1!
05231
f

s

,

ix

re

x

te

^cuT̂†T̂uc&5^c8uc8&>0, ~4.2!

where we have defineduc8&5T̂uc&. Furthermore, (T̂†T̂)†

5T̂†(T̂†)†5T̂†T̂, i.e., Ĝ5T̂†T̂ must be Hermitian. To ensur
normalization, one can simply divide by the trace: thus
matrix ĝ given by the formula

ĝ5T̂†T̂/Tr$T̂†T̂% ~4.3!

has all three of the mathematical properties that we req
for density matrices.

For the two-qubit system, we have a 434 density matrix
with 15 independent real parameters. Since it will be use
to be able to invert relation~4.3!, it is convenient to choose a
tridiagonal form forT̂:

T̂~ t !5S t1 0 0 0

t51 i t 6 t2 0 0

t111 i t 12 t71 i t 8 t3 0

t151 i t 16 t131 i t 14 t91 i t 10 t4

D . ~4.4!

Thus the explicitly ‘‘physical’’ density matrixr̂p is given
by the formula

r̂p~ t !5T̂†~ t !T̂~ t !/Tr$T̂†~ t !T̂~ t !%. ~4.5!

For future reference, the inverse relationship, by wh
the elements ofT̂ can be expressed in terms of the eleme
of r̂, is as follows:
2-7
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T̂51
A D

M 11
(1)

0 0 0

M 12
(1)

AM 11
(1)M 11,22

(2) AM 11
(1)

M 11,22
(2)

0 0

M 12,23
(2)

Ar44AM 11,22
(2)

M 11,23
(2)

Ar44AM 11,22
(2) AM 11,22

(2)

r44

0

r41

Ar44

r42

Ar44

r43

Ar44

Ar44

2 . ~4.6!
n

in
rib
ts

ts

r

al-
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n-

we
c

d

tion
Here we have used the notationD5Det(r̂); M i j
(1) is the first

minor of r̂, i.e., the determinant of the 333 matrix formed
by deleting thei th row and j th column of r̂; M i j ,kl

(2) is the
second minor ofr̂, i.e., the determinant of the 232 matrix
formed by deleting thei th and kth rows and j th and l th
columns ofr̂ ( iÞk and j Þ l ).

C. The likelihood function

The measurement data consist of a set of 16 coincide
counts nn (n51,2, . . . ,16) whose expected value isn̄n

5N^cnur̂ucn&. Let us assume that the noise on these co
cidence measurements has a Gaussian probability dist
tion. Thus the probability of obtaining a set of 16 coun
$n1 ,n2 , . . .n16% is

P~n1 ,n2 , . . . ,n16!5
1

Nnorm
)
n51

16

expF2
~nn2n̄n!2

2sn
2 G ,

~4.7!

wheresn is the standard deviation for thenth coincidence

measurement~given approximately byAn̄n) andNnorm is the
normalization constant. For our physical density matrixr̂p
the number of counts expected for thenth measurement is

n̄n~ t1 ,t2 , . . . ,t16!5N^cnur̂p~ t1 ,t2 , . . . ,t16!ucn&.
~4.8!

Thus the likelihood that the matrixr̂p(t1 ,t2 , . . . ,t16) could
produce the measured data$n1 ,n2 , . . . ,n16% is

P~n1 ,n2 , . . . ,n16!

5
1

Nnorm
)
n51

16

expF
2

@N^cnur̂p~ t1 ,t2 , . . . ,t16!ucn&2nn#2

2N^cnur̂p~ t1 ,t2 , . . . ,t16!ucn&
G , ~4.9!
05231
ce

-
u-

whereN5(n51
4 nn .

Rather than find the maximum value ofP(t1 ,t2 , . . . ,t16)
it simplifies things somewhat to find the maximum of i
logarithm ~which is mathematically equivalent!.3 Thus the
optimization problem reduces to finding theminimumof the
following function:

L~ t1 ,t2 , . . . ,t16!

5 (
n51

16
@N^cnur̂p~ t1 ,t2 , . . . ,t16!ucn&2nn#2

2N^cnur̂p~ t1 ,t2 , . . . ,t16!ucn&
.

~4.10!

This is the ‘‘likelihood’’ function that we employed in ou
numerical optimization routine.

D. Numerical optimization

We used theMATHEMATICA 4.0 routine FINDMINIMUM

which executes a multidimensional Powell direction set
gorithm~see Ref.@25# for a description of this algorithm!. To
execute this routine, one requires an initial estimate for
values oft1 ,t2 , . . . ,t16. For this, we used the tomograph
estimate of the density matrix in the inverse relation~4.6!,
allowing us to determine a set of values fort1 ,t2 , . . . t16.
Since the tomographic density matrix may not be no
negative definite, the values of thetn’s deduced in this man-
ner are not necessarily real. Thus for our initial guess
used the real parts of thetn’s deduced from the tomographi
density matrix.

For the example given in Sec. II, the maximum likelihoo
estimate is

3Note that here we neglect the dependence of the normaliza
constant ont1 ,t2 , . . . ,t16, which only weakly affects the solution
for the most likely state.
2-8
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r̂5S 0.5069 20.02391 i0.0106 20.04122 i0.0221 0.48331 i0.0329

20.02392 i0.0106 0.0048 0.00231 i0.0019 20.02962 i0.0077

20.04121 i0.0221 0.00232 i0.0019 0.0045 20.04251 i0.0192

0.48332 i0.0329 20.02961 i0.0077 20.04252 i0.0192 0.4839

D . ~4.11!
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This matrix is illustrated in Fig. 3~right!. In this case, the
matrix has eigenvalues 0.986 022, 0.013 977 7, 0, and 0;
Tr$r̂2%50.972 435, indicating that, while the linear reco
struction gave a nonphysical density matrix, the maxim
likelihood reconstruction gives a legitimate density matrix

V. ERROR ANALYSIS

In this section we present an analysis of the errors inh
ent in the tomographic scheme described in Sec. III. T
sources of error are found to be important: the shot no
error in the measured coincidence countsnn and the uncer-
tainty in the settings of the angles of the wave plates use
make the tomographic projection states. We will analy
these two sources separately.

In addition to determining the density matrix of a pair
qubits, one is often also interested in quantities derived fr
the density matrix, such as the entropy or the entanglem
of formation. For completeness, we will also derive the
rors in some of these quantities.

A. Errors due to count statistics

From Eq.~3.20! we see that the density matrix is specifi
by a set of 16 parameterssn defined by

sn5nn /N, ~5.1!

where nn are the measured coincidence counts andN
5(n51

4 nn . We can determine the errors insn using the fol-
lowing formula @26#:

dsndsm5 (
l,k51

16 S ]sn

]nl
D S ]sm

]nk
D dnldnk, ~5.2!

where the overbar denotes the ensemble average of the
dom uncertaintiesdsn and dnl . The measured coincidenc
counts nl are statistically independent Poissonian rand
variables, which implies the following relation:

dnldnk5nldl,k , ~5.3!

wheredl,k is the Kronecker delta.
Taking the derivative of Eq.~5.1!, we find that

]sm

]nn
5

1

Ndmn2
nm

N 2
Dn , ~5.4!

where
05231
nd

r-
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e

to
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Dn5 (
l51

4

dl,n5H 1 if 1<n<4

0 if 5<n<16.
~5.5!

Substituting from Eq.~5.4! into Eq.~5.2! and using Eq.~5.3!,
we obtain the result

dsndsm5
nm

N 2
dn,m1

nnnm

N 3
~12Dm2Dn!. ~5.6!

In most experimental circumstancesN@1, and so the second
term in Eq. ~5.6! is negligibly small in comparison to the
first. We shall therefore ignore it, and use the approxim
expression in the subsequent discussion:

dsndsm'
nm

N 2
dn,m[

sm

N dn,m . ~5.7!

B. Errors due to angular settings uncertainties

Using the formula~3.7! for the parameterssn we can find
the dependence of the measured density matrix on erro
the tomographic states. The derivative ofsn with respect to
some generic wave plate setting angleu is

]sn

]u
5H ]

]u
^cnuJ r̂ucn&1^cnur̂H ]

]u
ucn&J , ~5.8!

where ucn& is the ket of thenth projection state@see Eq.
~3.5!#. Substituting from Eq.~3.14! we find

]sn

]u
5 (

m51

16

smF H ]

]u
^cnuJ M̂mucn&1^cnuM̂mH ]

]u
ucn&J G .

~5.9!

For convenience, we shall label the four wave plate ang
$h1,n ,q1,n ,h2,n ,q2,n%, which specify the nth state by
$un,1 ,un,2 ,un,3 ,un,4%, respectively. Clearly themth state does
not depend on any of thenth set of angles. Thus we obtai
the following expression for the derivatives ofsn with re-
spect to wave plate settings:

]sn

]ul,i
5dn,l (

m51

16

sm f n,m
( i ) , ~5.10!

where

f n,m
( i ) 5H ]

]un,i
^cnuJ M̂mucn&1^cnuM̂mH ]

]un,i
ucn&J .

~5.11!
2-9
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The 1024 quantitiesf n,m
( i ) can be determined by taking th

derivatives of the functional forms of the tomographic sta
given by Eqs.~3.4! and ~3.5!, and evaluating those deriva
tives at the appropriate values of the arguments~see Table I!.

The errors in the angles are assumed to be uncorrela
as would be the case if each wave plate were adjusted
each of the 16 measurements. In reality, for qubit exp
ments, only one or two of the four wave plates are adjus
between one measurement and the next. However, the
sumption of uncorrelated angular errors greatly simplifies
calculation~which is, after all, only anestimateof the er-
rors!, and seems to produce reasonable figures for our e
bars.4 Thus, with the assumption

dun,idum, j5dn,md i , j~Du!2 ~5.12!

~whereDu is the rms uncertainty in the setting of the wa
plate, with an estimated value of 0.25° for our apparatus!, we
obtain the following expression for the errors insn due to
angular settings:

dsndsm5dn,m(
i 51

4

(
e,l51

16

f n,e
( i ) f n,l

( i ) sesl . ~5.13!

Combining Eqs.~5.13! and ~5.7! we obtain the following
formula for the total error in the quantitiessn :

dsndsm5dn,mLn ~5.14!

where

Ln5Fsn

N 1(
i 51

4

(
e,l51

16

f n,e
( i ) f n,l

( i ) seslG . ~5.15!

These 16 quantities can be calculated using the parametesn

and the constantsf n,e
( i ) . Note that the same result can be o

tained by assuminga priori that the errors in thesn are all
uncorrelated, withLn5dsn

2 ; the more rigorous treatmen
given here is necessary, however, to demonstrate this
For a typical number of counts, sayN510 000-8 it is found
that the contribution of errors from the two causes is roug
comparable; for larger numbers of counts, the angular
tings will become the dominant source of error.

Based on these results, the errors in the values of
various elements of the density matrix estimated by the
ear tomographic technique described in Sec. III are as
lows:

~Dr i , j !
25 (

n,m51

16
]r i , j

]sn

]r i , j

]sm
dsndsm5 (

n51

16

~M n( i , j )!
2Ln

~5.16!

4In other experimental circumstances, such as the measureme
the joint state of two spin-1/2 particles, the tomography would
realized by performing unitary operations on the spins prior to m
surement. In this case, an assumption analogous to ours wou
wholly justified.
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whereM n( i , j ) is the i , j element of the matrixM̂ n .
A convenient way in which to estimate errors for a ma

mum likelihood tomographic technique~rather than a linear
tomographic technique! is to employ the above formulas
with the slight modification that the parametersn should be
recalculated from Eq.~3.7! using the estimated density ma
trix r̂est. This does not take into account errors inherent
the maximum likelihood technique itself.

C. Errors in quantities derived from the density matrix

When calculating the propagation of errors, it is actua
more convenient to use the errors in thesn parameters@given
by Eq. ~5.15!#, rather than the errors in the elements of de
sity matrix itself ~which have non-negligible correlations!.

1. Von Neumann entropy

The von Neumann entropy is an important measure of
purity of a quantum stater̂. It is defined by@27#

S52Tr$r̂ log2~ r̂ !%52 (
a51

4

palog2pa , ~5.17!

wherepa is an eigenvalue ofr̂, i.e.,

r̂ufa&5paufa&, ~5.18!

ufa& being theath eigenstate (a51, . . . ,4). Theerror in this
quantity is given by

~DS!25 (
n51

16 S ]S
]sn

D 2

Ln . ~5.19!

Applying the chain rule, we find

S ]S
]sn

D5 (
a51

4 S ]pa

]sn
D S ]S

]pa
D . ~5.20!

The partial differential of an eigenvalue can be easily fou
by perturbation theory. As is well known~e.g., @28#! the
change in the eigenvaluela of a matrixŴ due to a pertur-
bation in the matrixdŴ is

dla5^faudŴufa&, ~5.21!

where ufa& is the eigenvector ofŴ corresponding to the
eigenvaluela . Thus the derivative ofla with respect to
some variablex is given by

]la

]x
5K faU]Ŵ

]x
UfaL . ~5.22!

Sincer̂5(n51
16 M̂ nsn , we find that

]pa

]sn
5^fauM̂ nufa& ~5.23!

t of
e
-
be
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and so, taking the derivative of Eq.~5.17!, Eq. ~5.20! be-
comes

S ]S
]sn

D52 (
a51

4

^fauM̂ nufa&
@11 ln pa#

ln 2
. ~5.24!

Hence

~DS!25 (
n51

16 S (
a51

4

^fauM̂ nufa&
@11 ln pa#

ln 2 D 2

Ln .

~5.25!

For the experimental example given above,S50.106
60.049.

2. Linear entropy

The ‘‘linear entropy’’ is used to quantify the degree
mixture of a quantum state in an analytically convenie
form, although unlike the von Neumann entropy it has
direct information theoretic implications. In a normalize
form ~defined so that its value lies between zero and 1!, the
linear entropy for a two-qubit system is defined by

P5
4

3
~12Tr$r̂2%!5

4

3 S 12 (
a51

4

pa
2D . ~5.26!

To calculate the error in this quantity, we need the followi
partial derivative:

]P
]sn

52
8

3 (
a51

4

pa

]pa

]sn

52
8

3 (
a51

4

pa^fauM̂ nufa&

52
8

3
Tr$r̂M̂ n%

52
8

3 (
m51

16

Tr$M̂mM̂ n%sm . ~5.27!

Hence the error in the linear entropy is

~DP!25 (
n51

16 S ]P
]sn

D 2

Ln5(
n

16 S 8

3 (
m51

16

Tr$M̂mM̂ n%smD 2

Ln .

~5.28!

For the example given in Secs. III and IV,P50.037
60.026.

3. Concurrence, entanglement of Formation, and tangle

The concurrence, entanglement of formation, and tan
are measures of the quantum coherence properties of a m
05231
t
o

le
ed

quantum state@29#. For two qubits,5 concurrence is defined

as follows: consider the non-Hermitian matrixR̂5 r̂Ŝr̂TŜ
where the superscript T denotes the transpose and the ‘‘

flip matrix’’ Ŝ is defined by

Ŝ5S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D . ~5.29!

Note that the definition ofŜ depends on the basis chosen; w
have assumed here the ‘‘computational bas
$uHH&,uHV&,uVH&,uVV&%. In what follows, it will be conve-
nient to writeR̂ in the following form:

R̂5
1

2 (
m,n51

16

q̂m,nsmsn , ~5.30!

where q̂m,n5M̂mŜM̂ n
TŜ1M̂ nŜM̂m

TŜ. The left and right

eigenstates and eigenvalues of the matrixR̂ we shall denote
by ^jau, uza&, andr a , respectively, i.e.,

^jauR̂5r a^jau,

R̂uza&5r auza&. ~5.31!

We shall assume that these eigenstates are normalized i
usual manner for biorthogonal expansions, i.e.,^jauzb&
5da,b . Further we shall assume that the eigenvalues
numbered in decreasing order, so thatr 1>r 2>r 3>r 4. The
concurrence is then defined by the formula

C5max$0,Ar 12Ar 22Ar 32Ar 4%

5maxH 0,(
a51

4

sgnS 3

2
2aDAr aJ , ~5.32!

where sgn(x)51 if x.0 and sgn(x)521 if x,0. The
tangle is given byT5C2 and the entanglement of formatio
by

E5hS 11A12C2

2 D , ~5.33!

whereh(x)52x log2x2(12x)log2(12x). Becauseh(x) is
a monotonically increasing function, these three quanti
are to some extent equivalent measures of the entangle
of a mixed state.

To calculate the errors in these rather complicated fu
tions, we must employ the perturbation theory for no
Hermitian matrices~see Appendix C for more details!. We
need to evaluate the following partial derivative:

5The analysis in this subsection applies to the two-qubit case o
Measures of entanglement for mixedn-qubit systems are a subjec
of ongoing research: see, for example,@30# for a recent survey. It
may be possible to measure entanglement directly, without quan
state tomography; this possibility was investigated in@31#.
2-11
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]C

]sn
5 (

a51

4

sgnS 3

2
2aD 1

2Ar a

]r a

]sn

5 (
a51

4

sgnS 3

2
2aD 1

2Ar a
K jaU ]R̂

]sn
UzaL

5 (
a51

4

(
m51

16

sgnS 3

2
2aD 1

2Ar a

^jauq̂m,nsmuza&,

~5.34!

where the function sgn(x) is the sign of the quantityx: it
takes the value 1 ifx.0 and 21 if x,0. Thus sgn(3/2
2a) is equal to11 if a51 and21 if a52,3, or 4. Hence
the error in the concurrence is

~DC!25 (
n51

16 S ]C

]sn
D 2

Ln

5 (
n51

16 F (
a51

4

(
m51

16

3sgnS 3

2
2aD 1

2Ar a

^jauq̂m,nsmuza&G 2

Ln .

~5.35!

For our example the concurrence is 0.96360.018.
Once we know the error in the concurrence, the errors

the tangle and the entanglement of formation can be fo
straightforwardly:

DT52CDC, ~5.36!

DE5
C

A12C2
h8S 11A12C2

2 DDC, ~5.37!

whereh8(x) is the derivative ofh(x). For our example the
tangle is 0.92860.034 and the entanglement of formation
0.94760.025.

VI. CONCLUSIONS

In conclusion, we have presented a technique for rec
structing density matrices of qubit systems, including a f
error analysis. We have extended the latter through to ca
lation of quantities of interest in quantum information, su
as the entropy and concurrence. Without loss of genera
we have used the example of polarization qubits of entang
photons, but we stress that these techniques can be ad
to any physical realization of qubits.
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APPENDIX A: THE Ĝ MATRICES

One possible set ofĜ matrices are generators of SU(2
^ SU(2), normalized so that the conditions given in E
~3.8! are fulfilled. These matrices are

Ĝ15
1

2 S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D , Ĝ25
1

2 S 0 2 i 0 0

i 0 0 0

0 0 0 2 i

0 0 i 0

D ,

Ĝ35
1

2 S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21

D , Ĝ45
1

2 S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D ,

Ĝ55
1

2 S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D , Ĝ65
1

2 S 0 0 0 2 i

0 0 i 0

0 2 i 0 0

i 0 0 0

D ,

Ĝ75
1

2 S 0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D , Ĝ85
1

2 S 0 0 2 i 0

0 0 0 2 i

i 0 0 0

0 i 0 0

D ,

Ĝ95
1

2S 0 0 0 2 i

0 0 2 i 0

0 i 0 0

i 0 0 0

D , Ĝ105
1

2 S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D ,

Ĝ115
1

2S 0 0 2 i 0

0 0 0 i

i 0 0 0

0 2 i 0 0

D , Ĝ125
1

2S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D ,

Ĝ135
1

2S 0 1 0 0

1 0 0 0

0 0 0 21

0 0 21 0

D , Ĝ145
1

2S 0 2 i 0 0

i 0 0 0

0 0 0 i

0 0 2 i 0

D ,
2-12
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Ĝ155
1

2 S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D , Ĝ165
1

2 S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D .

~A1!

As noted in the text, this is only one possible choice for th
matrices, and the final results are independent of the cho

APPENDIX B: THE M̂ MATRICES AND SOME OF THEIR
PROPERTIES

The M̂ matrices, defined by Eq.~3.15!, are as follows:

M̂15
1

2 S 2 2~12 i ! 2~11 i ! 1

2~11 i ! 0 i 0

2~12 i ! 2 i 0 0

1 0 0 0

D ,

M̂25
1

2 S 0 2~12 i ! 0 1

2~11 i ! 2 i 2~11 i !

0 2 i 0 0

1 2~11 i ! 0 0

D ,

M̂35
1

2 S 0 0 0 1

0 0 i 2~11 i !

0 2 i 0 2~12 i !

1 2~12 i ! 2~11 i ! 2

D ,

M̂45
1

2 S 0 0 2~11 i ! 1

0 0 i 0

2~12 i ! 2 i 2 2~12 i !

1 0 2~11 i ! 0

D ,

M̂55
1

2 S 0 0 2i 2~11 i !

0 0 ~12 i ! 0

22i ~11 i ! 0 0

2~12 i ! 0 0 0

D ,

M̂65
1

2 S 0 0 0 2~11 i !

0 0 ~12 i ! 2i

0 ~11 i ! 0 0

2~12 i ! 22i 0 0

D ,

M̂75
1

2 S 0 0 0 2~11 i !

0 0 2~12 i ! 2

0 2~11 i ! 0 0

2~12 i ! 2 0 0

D ,
05231
e
e.

M̂85
1

2 S 0 0 2 2~11 i !

0 0 2~12 i ! 0

2 2~11 i ! 0 0

2~12 i ! 0 0 0

D ,

~B1!

M̂95S 0 0 0 i

0 0 2 i 0

0 i 0 0

2 i 0 0 0

D , M̂105S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D ,

M̂115S 0 0 0 i

0 0 i 0

0 2 i 0 0

2 i 0 0 0

D ,

M̂125
1

2 S 0 2 0 2~11 i !

2 0 2~11 i ! 0

0 2~12 i ! 0 0

2~12 i ! 0 0 0

D ,

M̂135
1

2 S 0 0 0 2~11 i !

0 0 2~11 i ! 0

0 2~12 i ! 0 2

2~12 i ! 0 2 0

D ,

M̂145
1

2 S 0 0 0 2~12 i !

0 0 2~12 i ! 0

0 2~11 i ! 0 22i

2~11 i ! 0 2i 0

D ,

M̂155
1

2 S 0 22i 0 2~12 i !

2i 0 ~12 i ! 0

0 ~11 i ! 0 0

2~11 i ! 0 0 0

D ,

M̂165S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D .

The form of these matrices is independent of the cho

set of matrices$Ĝn% used to convert the density matrix into
column vector. However, theM̂ n matricesdo depend on the
set of tomographic statesucn&.

There are some useful properties of these matrices w
we will now derive. From Eq.~3.15!, we have
2-13
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^cmuM̂ nucm&5(
l

^cmuĜlucm&~B21!l,n . ~B2!

From Eq.~3.12! we have^cmuĜlucm&5Bm,l ; thus we ob-
tain the result

^cmuM̂ nucm&5dm,n . ~B3!

If we denote the basis set for the four-dimensional Hilb
space by$u i & ( i 51,2,3,4)%, then Eq.~3.14! can be written as
follows:

^ i ur̂u j &5(
k,l

(
n

^ i uM̂ nu j &^cnuk&^ l ucn&^kur̂u l &. ~B4!

Since Eq.~B4! is valid for arbitrary statesr̂, we obtain the
following relationship:

(
n

^ i uM̂ nu j &^cnuk&^ l ucn&5d ikd j l . ~B5!

Contracting Eq.~B5! over the indices (i , j ) we obtain

(
n

Tr$M̂ n%ucn&^cnu5 Î , ~B6!

whereÎ is the identity operator for our four-dimensional Hi
bert space.

A second relationship can be obtained by contracting
~B5!, viz.,

(
n

^ i uM̂ nu j &5d i j , ~B7!

or, in operator notation,

(
n

M̂ n5 Î . ~B8!

APPENDIX C: PERTURBATION THEORY FOR NON-
HERMITIAN MATRICES

Whereas perturbation theory for Hermitian matrices
covered in most quantum mechanics textbooks, the cas
non-Hermitian matrices is less familiar, and so we w
present it here. The problem is as follows. Given t
eigenspectrum of a matrixR̂0 @32#, i.e.,

^jauR̂05r a^jau, ~C1!

R̂0uza&5r auza&, ~C2!

where

^jauzb&5da,b , ~C3!

we wish to find expressions for the eigenvaluesr a8 and eigen-

stateŝ ja8u and uza8& of the perturbed matrixR̂85R̂01dR̂.
We start with the standard assumption of perturbat

theory, i.e., that the perturbed quantitiesr a8 , ^ja8u, and uza8&
can be expressed as power series of some parameterl:
05231
t

q.

s
of

l

n

r a85r a
(0)1lr a

(1)1l2r a
(2)1•••, ~C4!

uza8&5uza
(0)&1luza

(1)&1l2uza
(2)&1•••, ~C5!

^ja8u5^ja
(0)u1l^ja

(1)u1l2^ja
(2)u1•••, ~C6!

Writing R̂85R̂01ldR̂, and comparing terms of equal pow
ers of l in the eigenequations, one obtains the followi
formulas:

R̂0uza
(0)&5r a

(0)uza
(0)&, ~C7!

^ja
(0)uR̂05r a

(0)^ja
(0)u, ~C8!

~R̂02r a
(0)Î !uza

(1)&52~dR̂2r a
(1)!uza

(0)&, ~C9!

^ja
(1)u~R̂02r a

(0)Î !52^ja
(0)u~dR̂2r a

(1)!. ~C10!

Equations~C7! and ~C8! imply that, as might be expected,

uza
(0)&5uza&, ~C11!

^ja
(0)u5^jau, ~C12!

r a
(0)5r a . ~C13!

Taking the inner product of Eq.~C9! with ^jau, and using the
biorthogonal property Eq.~C3!, we obtain

r a
(1)5^jaudR̂uza&. ~C14!

This implies that

dr a[r a82r a'^jaudR̂uza&. ~C15!

Thus, dividing both sides by some differential incrementdx
and taking the limitdx→0, we obtain

]r a

]x
5K jaU ]R̂

]x
UzaL . ~C16!

Using the completeness property of the eigensta
(buzb&^jbu5 Î , and the identityR̂05(br buzb&^jbu, we obtain
the following formula

~R̂02r aÎ !215 (
bÞa

b

1

r b2r a
uzb&^jbu. ~C17!

Applying this to Eq.~C9! we obtain

udza
(1)&[uza8&2uza&'2 (

bÞa
b

S ^jbudR̂uza&
r b2r a

D uzb&.

~C18!

Similarly, Eqs.~C10! and ~C17! imply

^djau[^dja8u2^djau'2 (
bÞa

b

S ^jaudR̂uzb&
r b2r a

D ^jbu.

~C19!
2-14
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